RNN có thể mang thông tin từ các layer trước đến các layer sau, nhưng thực tế là thông tin chỉ mang được qua một số lượng state nhất định, sau đó thì sẽ bị vanishing gradient, hay nói cách khác là model chỉ học được từ các state gần nó => short term memory.
Cùng thử lấy ví dụ về short-term memory nhé. Bài toán là dự đoán từ tiếp theo trong đoạn văn. Đoạn đầu tiên “Mặt trời mọc ở hướng …”, ta có thể chỉ sử dụng các từ trước trong câu để đoán là đông. Tuy nhiên, với đoạn, “Tôi là người Việt Nam. Tôi đang sống ở nước ngoài. Tôi có thể nói trôi chảy tiếng …” thì rõ ràng là chỉ sử dụng từ trong câu đấy hoặc câu trước là không thể dự đoán được từ cần điền là Việt. Ta cần các thông tin từ state ở trước đó rất xa => cần long term memory điều mà RNN không làm được => Cần một mô hình mới để giải quyết vấn đề này => Long short term memory (LSTM) ra đời.